OCENA

DOROBKU NAUKOWEGO DR DAMIANA PŁAŻUKA
I JEGO ROZPRAWY HABILITACYJNEJ ZATYTUŁOWANEJ:

‘Ferrocenyowe związki o właściwościach przeciwnowotworowych’

Na ogólny dorobek Kandydata składa się 29 prac oryginalnych z lat 2001-2013, zamieszczonych bez wyjątku w czasopismach fachowych z obiegu międzynarodowowego, znajdujących się na tzw. liście filadelfijskiej, jeden patent międzynarodowy oraz obszerna praca przeglądowa zamieszczona w znanej monografii Comprehensive Heterocyclic Chemistry. Do tego dochodzi duży zestaw prezentacji konferencyjnych, głównie komunikatów posterowych, w łącznej liczbie 32. Wśród nich znajduje się
jedna prezentacja wygłoszona na zaproszenie organizatorów. Dorobek zgromadzony po uzyskaniu stopnia doktora obejmuje 20 prac oryginalnych, z których do cyklu habilitacyjnego włączono 8 opracowań oraz dodano 1 patent. Prace cyklu habilitacyjnego zostały opracowane i opublikowane w stosunkowo krótkim czasie obejmującym lata 2009-2013. Wszystkie publikacje mają charakter opracowań zespołowych; kandydat jest autorem do korespondencji w dwóch przypadkach. Dokumentacja rozprawy habilitacyjnej zawiera oświadczenia współautorów oraz charakterze ich udziału w powstawaniu tych opracowań. Wskazują one jednoznacznie na kluczową rolę kandydata w realizacji tych części projektów, które dotyczyły projektowania nowych pochodnych ferrocenyloowych oraz ich syntez, separacji i oczyszczania. Recenzent odniosł wrażenie, że podawany przez kandydata własny, procentowy udział w powstawaniu niektórych prac wydaje się zawyżony, np. dla pracy H8, w której figuruje 10 współautorów, kandydat podaje swój kład oszacowany na 60% (autorem do korespondencji jest prof. G. Jaouen). Podobnie, w pracy H1, dotyczącej badań rentgenostrukturalnych kompleksu avidyny z modyfikowaną biotyną, z ośmioma współautorami, kandydat wskazuje swój udział na 65% (autorem do korespondencji jest prof. J. Zakrzewski). W tej kwestii, pomocne jest stwierdzenie profesora J. Zakrzewskiego, który w swoim oświadczeniu zaznacza, że przedstawienie ocenianego cyklu prac przez dr D. Płażuka w formie rozprawy habilitacyjnej jest ‘... całkowicie uzasadnione’.

Ocena bibliometryczna prac wchodzących do cyklu habilitacyjnego wypada bardzo dobrze; na jedną publikację przypada średnio 3,330 wartości współczynnika oddziaływania IF (impact factor), bez uwzględnienia patentu. Dla jednej publikacji włączonej do cyklu habilitacyjnego, wartość punktacji z listy MNIŚW jest także wysoka i wynosi średnio 30,6 pkt. Całkowita liczba cytowań wg bazy Web of Science wynosi 247, w tym, bez autocytowań 217. Ten wynik trzeba ocenić jako bardzo dobry i świadczący o tym, że prace kandydata spotykają się ze znacznym zainteresowaniem w międzynarodowym środowisku naukowym. Wartość indeksu Hirscha podawana za bazą Web of Science wynosi IH = 8. Można więc z całą pewnością orzec, że w świetle parametrów scentometrycznych, dorobek stosunkowo młodego kandydata przedstawia się bardzo dobrze na tle podobnej oceny innych rozpraw habilitacyjnych przedstawianych przez pracowników naukowych krajowych placówek badawczych i jednostek akademickich.

Charakterystyka osiągnięcia naukowego: Zbiór ośmiu publikacji oryginalnych oraz jednego patentu, stanowiących rozprawę habilitacyjną został opatrzony komentarzem przedstawionym na 10 stronach załączonego do dokumentacji autoreferatu. W tym samym opracowaniu, Kandydat omówił także inne osiągnięcia badawcze, nie wchodzące w zakres rozprawy habilitacyjnej.

Cykl habilitacyjny jest bardzo zwarty pod względem tematycznym i dotyczy wyłącznie prac odnoszących się do syntezy, metod oczyszczania, badań strukturalnych oraz badania aktywności biologicznej związków metalooorganicznych oraz biometalooorganicznych zawierających w swoim składzie fragment ferrocenylowy lub inne ugrupowanie metalocenowe, np. rutenocen. Związki tego typu, jak dotychczas, są praktycznie nieznane jako biologicznie aktywne składniki preparatów leczniczych. Przedstawione przez kandydata badania wskazują na realne możliwości ich otrzymywania na drodze wieloetapowej syntezy organicznej oraz dalszego badania ich aktywności biologicznych. Duża grupa analogów znanego wcześniej ferrocifenolu, w
których zablokowano możliwość swobodnej rotacji przy jednym z atomów węgla wiazań etylenowego C=C, została ontrymana na drodze reakcji McMurry z wykorzystaniem p,p'-dihydroksybenzofenonu oraz ferrocenylofanów (praca H1). Okazało się, że ta prosta modyfikacja strukturalna prowadzi do wysokiej aktywności przeciwnowołtowej niektórych spośród otrzymywanych związków. Obszernie badania omówione w publikacji oraz opisane w patencie (H9) zostały przeprowadzone w celu śledzenia wpływu modyfikacji strukturalnych na zmianę obserwowanej aktywności przeciwnowołtowej.

Z punktu widzenia rozwoju metod syntetyz organicznej wysoko oceniam badania kandydata nad innym sposobem modyfikacji ferrocifenolu, który polegał na zastąpieniu wiazań etylenowego izosterycznym ugrupowaniem 1,2,3-triazolowym. Stosunkowo prosta metoda, w której jako kluczowy substrat wykorzystano etynylferrocen zostało oparta na bardzo popularnym wariancie reakcji Huisena z wykorzystaniem O-zablokowanego azydku p-hydroksyfenylowego. Pochodne 1,2,3-triazolowe uzyskiwane po zdjęciu grupy ochronnej były testowane w zakresie wykazywanej aktywności przeciwnowołtowej, która jednak okazała się niższa niż w przypadku wcześniej omawianych analogów ferrocifenu. Kandydat ustalił, że wprowadzenie grupy benzylowej całkowicie zniosło aktywność przeciwnowołtową.

Obszerny fragment rozprawy odnosi się do syntez i badania aktywności biologicznej nowych pochodnych biotyny, fukcionalizowanych grupa ferrocenylowej, rutenocenylowej oraz pierścieniami poliarenowymi, np. pirenylem (prace H2 i H5). W tym fragmencie badań wykonano również badania rentgenostrukturalne nad złożonymi kompleksami biometalooorganicznymi, zawierającymi w swoim składzie awidynę, biotynę, łącznik (linker) oraz ugrupowanie ferrocenylowe.

W innym obszarze opisywanych poszukiwań związków biometalooorganicznych wykazujących właściwości antynowotworowe, kandydat przygotował i poddał badaniom konjugaty ferrocenu z paklitaksem i docetaksem. W serii tych pochodnych ferrocenu chodziło o zbadanie wpływu grupy ferrocenylowej na właściwości cytotoksyczne znanych inhibitorów depolimerizacji mirotubul (praca H4). Niektóre z testowanych konjugatów wykazywały ciekawe właściwości biologiczne, komplementarne do tych, które znane są od dawna w przypadku niemodyfikowanego paklitakseleu oraz docetakseleu.

We wszystkich pracach cyklu habilitacyjnego, Kandydat wykazał wysokie umiejętności w zakresie syntetyz, separacji oraz identyfikacji uzyskiwanych produktów. Badania aktywności antynowotworowe zostały wykonane w profesjonalny sposób, we współpracujących zespołach specjalizujących się w estach biologicznych i medycznych.

Zdaniem recenzenta, osiągnięcie naukowe zaprezentowane przez dr Damiana Płażuka w jego rozprawie habilitacyjnej posiadą dużą wartość zarówno ze względu na nowatorski oraz interdysecyjny charakter. Opisane w publikacjach osiągnięcia kandydata są dowodem jego wysokich umiejętności zarówno w zakresie nowoczesnej syntetyz organicznej jak również metod separacji oraz badań strukturalnych. Zebrane rezultaty zostały opracowane w prawidłowy sposób, odpowiadający najnowszym standardom międzynarodowego piśmiennictwa fachowego, a ich wysoką wartość potwierdzono w procesie oceny niezależnych recenzentów. Dokonana analiza osiągnięć kandydata potwierdza, że zgromadzenie dorobku o tak złożonym charakterze wymagało rozległej współpracy z przedstawicielami innych dziedzin, zajmującymi się zaawansowanymi metodami badania struktury (rentgenografia biomolekuł) oraz...
testowania aktywności biologicznych. W tym ostatnim przypadku, kandydat wykorzystał zarówno z możliwości laboratoriów zagranicznych jak i krajowych; w pierwszej kolejności należy wskazać na szeroka współpracę z Katedrą Biofizyki Molekularnej w Uniwersytecie Łódzkim.

Ogólne osiągnięcia naukowe, organizacyjne i dydaktyczne: Ważna cecha osiągnięć naukowych Kandydata jest to, że powstały one przy wykorzystaniu środków pozyskanych na prowadzenie badań zarówno w kraju jak i za granicą. Jak wykazano w załączonej dokumentacji, dr D. Płażuk z powodzeniem aplikował o pozyskanie grantów naukowych zarówno jako wykonawca (3 projekty w latach 2006-2014) finansowane przez KBN, MNiSzW oraz NCN) jak i w roli kierownika (2 projekty). Aktualnie jest kierownikiem pozyskanego w roku 2013 grantu OPUS w konkursie Narodowego Centrum Nauki.

Na inne osiągnięcia naukowe, nie ujęte w materiał rozprawy, składają się 22 prace oryginalne, które na ogół, odnoszą się tematycznie do chemii związków ferrocenyjowych. Wartościowym doświadczeniem dla Kandydata było przygotowanie obszernej pracy przeglądowej, dotyczącej chemii tiiranów oraz tiirenów, czyli dotyczące zagadnień odległych od tematyki rozprawy habilitacyjnej.

W ocenie dorobku Kandydata do uzyskania stopnia dr hab. ważne jest zapoznanie się z jego pozycją jako partnera współpracy międzynarodowej oraz organizatora życia naukowego. W tym zakresie można stwierdzić, że dr D. Płażuk rozwija od wielu lat aktywne kontakty z zespołami zagranicznymi oraz krajowymi. Wydaje się, że będą one rozwijane nadal, także po uzyskaniu stopnia dr habilitowanego.

Dr D. Płażuk uczestniczy w życiu organizacji naukowych; jest członkiem Polskiego Towarzystwa Chemicznego oraz American Chemical Society. Pracował w grupie wolontariuszy pomagających przy organizacji International Symposium on the Organic Chemistry of Sulfur (Częstochowa, 2012).

W podsumowaniu tej części oceny kandydata stwierdzam, że jest on aktywnym nauczycielem akademickim i zdolnym organizatorem, który wykazuje dobrze zaznaczone cechy lidera grupy badawczej.
Podsumowanie i wniosek: Dr Damian Płażuk jest przykładem młodego naukowca o znaczącym dorobku naukowym zarówno od strony merytorycznej jak i oceny scientometrycznej. Szczególną uwagę zwraca jego aktywna i prowadzona z dużym powodzeniem, działalność na rzecz pozyskiwania środków przeznaczonych na finansowanie prowadzonych badań. Zgromadzony dorobek naukowy dowodzi jego wysokich umiejętności w zakresie organizacji i prowadzenia badań, a także systematycznego opracowywania ich wyników. Na wyraźne podkreślenie zasługuje fakt, że posiadana wiedzę i umiejętności zdobywał nie tylko w macierzystym laboratorium, lecz również w renomowanych zespołach zagranicznych. Zgromadzone w ten sposób doświadczenie jest niezbędne dla dobrego kierowania własnym zespołem naukowym po uzyskaniu samodzielności naukowej.

W oparciu o przedstawione fakty, stwierdzam wobec Komisji Habilitacyjnej, że w świetle obowiązującej Ustawy o Stopniu i Tytule Naukowym, przedstawiona przez Kandydata dokumentacja i opisane w niej osiągnięcia naukowe, organizacyjne i dydaktyczne, stwarzają mocną podstawę do wystąpienia o nadanie dr Damianowi Płażukowi stopnia dr habilitowanego w zakresie nauk chemicznych; z pełnym przekonaniem formułuję i popieram taki wniosek.

Kierownik Katedry Chemicznej
prof. zw. dr hab. Grzegorz Młostów

Dziekan Wydziału, Kierownik Katedry: prof. dr hab. Grzegorz Młostóż
tel. (+48) 42 635-57-61, e-mail: gmioston@unl.lodz.pl