Prof. dr hab. Teobald Kupka

RECENZJA

pracy doktorskiej Pani mgr Marty Adamiak, zatytułowanej

"Teoretyczne badania właściwości konformacyjnych wybranych pochodnych eterów azakoronowych zawierających fragmenty glukozy lub celbiozy oraz ich zdolności do kompleksowania aspiryny, paracetamolu i busulfanu"

wykonanej pod opieką Pani dr hab. Anny Ignaczak, profesora Uniwersytetu Łódzkiego.

1. Wstęp.
Na wstępie pragnę zaznaczyć, iż tematyka rozprawy doktorskiej Pani Adamiak jest swoistą odpowiedzią chemików na wszechobecne zagrożenia zdrowia w XX i XXI wieku, głównie ze strony nowotworów. Autorka próbuje teoretycznie scharakteryzować potencjalnie skuteczne sposoby dozowania „medykamentu” (tu stosuję celowo żargon Autorki, podkreślającej istotę starych leków w medycynie) który „zabija komórki nowotworowe” i jednocześnie poważnie uszkadza tkanki zdrowe. Aktualny trend w badaniach naukowych opiera się o opracowanie skutecznego „transportu docelowego leku do chorej tkanki”, tj. „targeted drug delivery". Istotne jest znalezienie skutecznego nośnika, tworzącego kompleks z lekiem, często o zwiększonej rozpuszczalności w wodzie i jego uwalnianie w tkance chorej. Wśród dodatkowych i koniecznych właściwości nośnika leków przyjmuje się jego nietoksyczność i
szybkie wydalanie z organizmu. Pod tym względem związki zawierające grupy hydroksylove i jednostki cukrowe spełniają powyższe kryteria. Warto wspomnieć, iż wśród obieguujących nośników leków badane są m. in. cyklodekstryny, różnego typu miele oraz nanoruks węglowe i grafeny.

Podziwiam również swoistą „symbiozę” panującą na Uniwersytecie Łódzkim. Autorka pisze o udanej syntezie trzech nowych pochodnych cukrowych związków azakoronowych, rozpuszczalnych w wodzie i nietoksycznych w zespole prof. Porwańskiego z Wydziału Chemii Uniwersytetu Łódzkiego. Obecność atomów tlenu i azotu w pierścieniu oraz grup hydroksyloowych w jednostkach cukrowych wskazuje na możliwość tworzenia szeregu kompleksów, w tym z lekami typu aspiryna, paracetamol i busulfan. Z obowiązku recenzenta podaję długie nazwy związków oznaczanych w trakcie dysertacji symbolami L1 i L2: 1,10-N,N’-bis-(β-D-mocznikoglukopyranosylo)-4,7,13-trioksza-1,10-diazacyclopentadekan oraz 1,10-N,N’-bis-(β-D-mocznikocelulozylo)-4,7,13-trioksza-1,10-diazacyclopentadekan.

Pod kierunkiem opiekuna/promotora naukowego Pani mgr Marta Adamiak postanowiła scharakteryzować teoretycznie ligandy L1 i L2 pod kątem ich przydatności do transportu wcześniej wymienionych leków. Warto wspomnieć, iż busulfan jest aktualnie stosowany w terapii przeciwnowotworowej.

Uważam, iż Doktorantka trafiała do bardzo dobrego Zespołu badawczego i skorzystała tam z szansy poznania warsztatu badawczego łączącego badania strukturalne z chemią teoretyczną. Chciałbym teraz krótko scharakteryzować sylwetkę naukową Autorki, a następnie omówić i podsumować przedstawioną mi do oceny dysertację doktorską i zaprezentowane osiągnięcia naukowe.

2. Sylwetka naukowa Autorki.

pracy doktorskiej Autorki (Adamiak, M., Ignaczk, A., Quantum chemical study of the
complexation process of bis-β-D-glucopyanosyl diazacrown derivative with aspirin and
pierwszy jest opublikowany w czasopiśmie o stosunkowo wysokim współczynniku
oddziaływania (IF = 3.975), a drugi o mniejszym (IF = 1.403). W tym miejscu chciałbym
stwierdzić, iż prawdopodobnie ze względu na krótki okres czasu od opublikowania tych prac
nie pojawiły się jeszcze tzw. cytowania obce. Ponadto, od roku 2016 Pani mgr Marta
Adamiak jest współautorką 25 wystąpień konferencyjnych (4 referatów i 21 posterów). Jest
ona bardzo aktywna w zakresie organizowania szeregu wydarzeń naukowych (5 konferencji),
w tym dla doktorantów i środowiski zewnętrznego. Dodatkowo, w zeszłym roku brała
aktywny udział w pracach komitetu organizacyjnego konferencji międzynarodowej w Spale
(40th European Meeting on Physical Organic Chemistry „Structure and Reactivity”).
Wspomniane powyżej osiągnięcia i parametry „statystyczne” są znaczące pod względem
jakościowym i ilościowym.

Przedłożona mi do oceny dysercja doktorska ma tzw. „klasyczną formę” lecz nadal
dopuszczoną ustawą. Muszę w tym miejscu podzielić się moim pierwszym wrażeniem:
dostając do ręki ciężką „księgę”, liczącą praktycznie 400 stron, byłem pełen obaw czy
podołam takiemu wyzwaniu.
Praca rozpoczyna się jedną stroną streszczenia w języku angielskim a następnie
szczegółowym spisem treści oraz „Wykazem skrótów i symboli”. Może to kwestia gustu ale
osobiście wolalbym w kilku miejscach bardziej zwięzione wyjaśnienia. Np. zamiast „ASA –
cząsteczka aspiryny” pisaliśmy „ASA – aspiryna”. W pierwszym rozdziale zatytułowym
„Wstęp” Autorka przedstawia cel i zakres badań. Dla mnie interesująca była informacja, iż
Pani mgr Marta Adamiak postanowiła scharakteryzować metodami chemii teoretycznej
ligandy L1 i L2 oraz ich potencjalne kompleksy niekowalencyjne z wybranymi lekami:
aspiryną, paracetamolem i busulfanem. Inspiracją badań był dostęp do nowych związków,
ubytanych w zespole naukowym profesora Porwańskiego (Wydział Chemii UL) jako
potencjalnych nośników leków. W tym miejscu Pani mgr Marta Adamiak przedstawiła
również wzory strukturalne ligandów L1 i L2 oraz trzech leków wybranych do badań
(aspiryna, paracetamol i busulfan). Z dużą ciekawością i przyjemnością przystąpiłem do
lektury krótkiego Rozdziału Drugiego pt. „Przegląd literatury” na stronach od 14 do 36 a
następnie Rozdziału Trzeciego (str. 37 – 56) opisującego bardzo przystępnie stosowane
metody teoretyczne, rozpoczynając od mechaniki molekularnej z polami siłowymi MM+, AMBER i CHARMM. Następnie wspomniała o metodach ab initio HF SCF oraz półempirycznych PM6 i PM7. Wprowadziła również powszechnie stosowaną za względu na jakość obliczeń i czas ich trwania Teorię Funkcjonalu gęstości (DFT). Ze względu na „giętkość” badanych molekuł i możliwość występowania bardzo dużej ilości tautomerów tylko nieznacznie różniących się energią Autorka wspomniała też o tzw. metodach symulacyjnych, w tym Dynamiczne Langevina i Algorytmie Verleta. Trzon pracy na str. 57 do 219 stanowi Rozdział Czwarty zawierający wyniki badań własnych oraz ich analizę. Rozdział 4.1 dotyczy analizy konformacyjnej ligandów L1 i L2 w próżni i w wodzie. Na początku Pani mgr Marta Adamiak szczegółowo wyjaśnia swoje podejście badawcze, poczynając od zaprojektowania struktur ligandów w programie HYPERCHEM, ich wstępnej optymalizacji przy pomocy mechaniki molekularnej, metod półempirycznych i ostatecznie na poziomie teorii DFT, w tym głównie B3LYP-D2/6-31G**. Dla mniejszego liganda (L1) dodatkowo zastosowała funkcjonały gęstości B3LYP-D3, B3LYP-DCP i M06GD3 z bazami funkcjonalnymi zawierającymi zarówno funkcje polarizacyjne jak i rozmity (6-31++G**). Istotne było uwzględnienie oddziaływań dyspersyjnych stosując odpowiednie poprawki. W przypadku liganda L2 prowadziła dodatkowe obliczenia przy pomocy tzw. funkcjonału gęstości Truhlara MN15-L oraz funkcjonału meta korelacyjno-wymienionego PW6B95. Ponadto, porównała wyniki uzyskane dla liganda L2 przy pomocy funkcjonałów B3LYP-D3 i B3LYP-GD3BJ.

W tym miejscu chciałbym podkreślić rzetelność naukową Autorki, piszącej o tym, że dla tak „giętkich” molekuł można zaobserwować zupełnie różną kolejność tautomerów pod względem energii, uzyskana przy pomocy metod MM, półempirycznych i DFT. Taki obraz rzeczywistości jest zrozumiały gdyż zoptymalizowane struktury geometryczne różnią się jedynie nieznacznie energią. Autorka wybiera kilka struktur o najniższej energii do dalszych badań. W tym miejscu chciałbym usłyszeć w publicznej dyskusji jaka zdaniem Autorki jest „sensowna” różnica energii, pozwalająca odróżnić dwa tautomer w fazie gazowej i w wodzie. Będzie to miało odzwierciedlenie w obliczonych z rozkładu Boltzmanna udziałach poszczególnych populacji.

Oprócz energii całkowitej Pani mgr Marta Adamiak analizuje orbitale LUMO, HOMO, przerwę energetyczną E_g oraz przeprowadza analizę populaacyjną i przechodzi do porównania teoretycznych (skalowanych) widm oscylacyjnych w przybliżeniu harmonicznym z wartościami eksperymentalnymi. Podobnie analizuje uśrednione wyniki NMR (1H i 13C) obliczone na poziomie teorii B3LYP/6-31++G** dla struktur optymalizowanych w wodzie.
stosując przybliżenie PCM. Poprawkę na dyspersję stosuje tylko do optymalizacji struktury geometrycznej i słusznie pomija ją w obliczeniach NMR. Uzyskane wyniki wskazują na stosunkowo dobre przewidywanie parametrów widm IR oraz 13C NMR. Widma rezonansu protonowego (nie wodorowego) są gorzej odtwarzane przez teorię. W tym przypadku sugerowalbym zastosowanie jednakowej miary, tj. policzenie odchylen od eksperymentu 1H i 13C NMR w procentach oraz podawanie oddzielnych wartości RMSD.

W podrozdziale 4.2 Pani mgr Marta Adamiak pokazała analizę najkorzystniejszych energetycznie struktur dwóch badanych leków – aspiryny i paracetamolu a następnie poszukiwała potencjalnych niskoenergetycznych kompleksów „lek-носник”. Stosowała zarówno kryterium energii oddziaływania skorygowanej o błąd superpozycji bazy (BSSE) jak i geometryczne (długość utworzonego wiązania wodorowego). W podobny sposób w kolejnym podrozdziale (4.3) badała tworzenie kompleksów aspiryny i paracetamolu z ligandum L2. W ostatnim etapie swojej pracy doktorskiej skoncentrowała się na powstawaniu kompleksów busulfanu z ligandami L1 i L2.

Należy wspomnieć, iż w każdym przypadku Pani mgr Adamiak analizowała kompleksy typu 1:1.

4. Ogólna ocena osiągnięć naukowych Pani mgr Marty Adamiak.
Pani mgr Marta Adamiak wykorzystała szereg nowoczesnych metod obliczeniowych chemii teoretycznej do skonstruowania molekuł L1 i L2 (1,10-N,N'-bis-(β-D-mocznikoglukopiranozylo)-4,7,13-trioksa-1,10-diazacyklopentadekan oraz 1,10-N,N'-bis-(β-D-mocznikocelobiozylo)-4,7,13-trioksa-1,10-diazacyklopentadekan) jako potencjalnych ligandów zdolnych do utworzenia trwałych kompleksów z wybranymi lekami, tj. aspiryną, paracetamolem i busulfanem. Istotnym elementem jej badań był dobór metod, pozwalających na rozróżnienie struktur o zbliżonej energii i weryfikacja wyników przez porównanie przewidywanych widm IR i NMR z wielkościami zmierzonymi. Wyniki uzyskane w trakcie realizacji pracy doktorskiej Pani mgr Marty Adamiak, opublikowane w dwóch obszernych publikacjach i prezentowane na wielu konferencjach w znacznym stopniu poszerzają naszą wiedzę na temat uzyskania potencjalnych molekuł do transportu leków w organizmie pacjenta.

5. Uwagi krytyczne
Z obowiązku recenzenta w tekście wyrazilem już kilka uwag krytycznych oraz swoich wątpliwości. Ponadto, trudno mi zaakceptować bardzo długie tytuły rysunków oraz nagłówki tabel (od 1/5 do 1/3 strony).
W trakcie publicznej obrony chętnie posłucham opinii Pani mgr Marty Adamiak na temat wcześniej wspomnianych uwag dotyczących dokładności obliczeń i zakresu błędów.
Przyznaję, iż większość moich uwag jest dyskusyjna i nie umniejsza bardzo pozytywnego wrażenia w trakcie czytania niniejszej dysertacji. Dlatego też moje uwagi krytyczne nie mają wpływu na ostateczną i bardzo pozytywną ocenę przedstawionej rozprawy doktorskiej. Tekst rozprawy Pani mgr Marty Adamiak świadczy o doskonałym opanowaniu nowoczesnych technik obliczeniowych i umiejętności rozwiązywania bardzo trudnych problemów chemii fizycznej.

6. Podsumowanie
Podsumowując stwierdzam, że rozprawa doktorska Pani mgr Marty Adamiak stanowi oryginalne rozwiązanie problemu naukowego i w pełni spełnia wymogi art. 13 ustawy z dnia 14 marca 2003 roku „O stopniach naukowych i tytule naukowym oraz o stopniach w zakresie sztuki” (Dz. U. z 2003 r. nr 65 poz. 595 ze zm. w Dz. U. z 2005 r., nr 164, poz. 1365) i ustawy z dnia 18 marca 2011 r. o zmianie ustawy — Prawo o szkolnictwie wyższym, ustawy
o stopniach naukowych i tytule naukowym oraz o stopniach i tytule w zakresie sztuki oraz o zmianie niektórych innych ustaw Dz. U. z 2011 r. nr 84 poz. 455 oraz Dz.U. 2016 poz. 882 (Obwieszczenie Marszałka Sejmu Rzeczypospolitej Polskiej z dnia 3 czerwca 2016 r. w sprawie ogłoszenia jednolitego tekstu ustawy o stopniach naukowych i tytule naukowym oraz o stopniach i tytule w zakresie sztuk) oraz ROZPORZĄDZENIA MINISTRA NAUKI I SZKOLNICTWA WYŻSZEGO z dnia 19 stycznia 2018 r. w sprawie szczegółowego trybu i warunków przeprowadzania czynności w przewodzie doktorskim, w postępowaniu habilitacyjnym oraz w postępowaniu o nadanie tytułu profesora, § 6. Z pełnym przekonaniem wniosku do Rady Naukowej Wydziału Chemicznego Uniwersytetu Łódzkiego o dopuszczenie Pani mgr Marty Adamiak do dalszych etapów przewodu doktorskiego.

Teobald Kupka

Opole, 12 Czerwiec 2020

Tel. 665 921 475; e-mail:
teobaldk@gmail.com; teobald@uni.opole.pl